

				Printed Page: 1 of 3						
					Sub	ject	Cod	le: ŀ	KOE	075
Roll No:										

BTECH (SEM VII) THEORY EXAMINATION 2023-24 OPERATIONS RESEARCH

TIME: 3 HRS **M.MARKS: 100**

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief. $2 \times 10 = 20$

	tempt wit questions in orien.	21 10
Q no.	Question	Marks
a.	What is the Simplex method in Linear Programming?	2
b.	Define a Two Variable Linear Programming model.	2
c.	In what industries are transportation problems commonly encountered?	2
d.	Define the objective of mathematical models in transportation problems.	2
e.	What is the primary goal of the shortest path model in network techniques?	2
f.	Define the minimum spanning tree problem.	2
g.	What is a rectangular game in the context of game theory?	2
h.	What is the Minimax theorem, and what does it ensure in game theory?	2
i.	How does the EOQ model balance ordering costs and holding costs?	2
j.	Define Reorder Point (ROP) and its significance in inventory management.	2

2. Attempt any three of the following:

•	recompt any united of the following.	IVAU						
a.	Define Operations Research and provide a numerical example	10						
	illustrating a real-world problem that could be addressed using OR							
	techniques.							
b.	Define Transportation Problems and distinguish between balanced and	10						
	unbalanced transportation problems.							
c.	Explain the concept of the Shortest Path Model in network analysis.	10						
d.	Discuss the Minimax Theorem and its significance in game theory.	10						
	Provide a step-by-step explanation of how the minimax strategy is							
	determined for a player in a given game.							
e.	Define and explain the Economic Order Quantity (EOQ) model. Discuss	10						
	the assumptions and limitations of the EOQ model.							

SECTION C

3. Attempt any *one* part of the following:

a. Consider the following linear programming problem:

a.	Consider the following linear programming problem: Maximize $Z=3x_1+2x_2$ Subjected to:	10	
	$2x_1 + x_2 \le 10$		
	$4x_1-5x_2\geq -20$		
	$x_1,x_2\geq 0$		
	Apply the Simplex Method to find the optimal solution.		
b.	Consider the following linear programming problem:	10	

Printed Page: 2 of 3 Subject Code: KOE075 **Roll No:**

BTECH (SEM VII) THEORY EXAMINATION 2023-24 **OPERATIONS RESEARCH**

TIME: 3 HRS **M.MARKS: 100**

> Maximize $Z=4x_1+3x_2$ Subjected to:

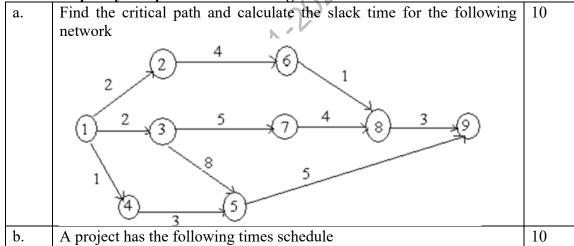
$$3x_1 + 2x_2 \le 12$$

$$2x_1 - x_2 \ge 2$$

$$x_1, x_2 \ge 0$$

Apply the Dual Simplex Method to find the optimal solution.

Attempt any one part of the following: $10 \times 1 = 10$ 10


	Job 1	Job 2	Job 3	
Machine 1	8	6	10	
Machine 2	9	7	4	b
Machine 3	3	2	5	

	Warehouse 1	Warehouse 2	Warehouse 3	Supply
Destination 1	6	8	10	90
Destination 2	12	14	16	120
Destination 3	18	20	22	150
Demand	80	100	180	

Use the Modified Distribution Method (MODI) to find the optimal solution.

Attempt any one part of the following: **5.**

 $10 \times 1 = 10$

				Printed Page: 3 of 3							
				Sub	ject	Cod	le: K	KOE	075)	
Roll No:											

BTECH (SEM VII) THEORY EXAMINATION 2023-24 OPERATIONS RESEARCH

TIME: 3 HRS **M.MARKS: 100**

Activity	Times in weeks	Activity	Times in weeks
(1-2)	4	(5 7)	9
(1-3)	1	(5 – 7)	8
(2-4)	1	(6-8)	1
(3-4)	1	(7 - 8)	2
(3-5)	6	(8 - 9)	1
(4-9)	5	(8-10)	8
	3	(9-10)	7
(5-6)	4		

Construct the network and compute 1. T_E (Head event) and T_T (Tail event) for each event 2. Float for each activity 3. Critical path and its duration

6.	Attempt any	y one	part of the following:
----	-------------	-------	------------------------

A	attempt any <i>one</i>	e part of	f the fo	lowing:	1	$0 \times 1 = 10$	
a.	Find the rang saddle point f	10	5				
	Player A	B_1	B_2	B ₃		8)P	•
	A_1	2	4	5	,	J.	
	A_2	10	7	q	0.1	·	
	A_3	4	p	6	2		
b.	of every 5 mi and service ti a) Average nu b) Expected v	ns. and me are earmber of vaiting to	the cash xponen focuston time in t	tially distributed, the ter waiting in the qualities queue	18	10	

 $10 \times 1 = 10$

•	At	tempt any <i>one</i> part of the following:	10 x 1 =
	a.	Question: A company sells 5,000 units of a product annually with a	10
		holding cost per unit of Rupees 2 and ordering cost of Rupees 100 per	
		order. Calculate the Economic Order Quantity	
	b.	A retailer faces a demand of 200 units per week with a standard	10
		deviation of 20 units. The lead time is 2 weeks. Calculate the Reorder	
		Point (ROP) for a desired service level of 95%.	